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Abstract

Heterogeneous multi-tier wireless networks deploy many small cells to overcome

the scarcity of bandwidth for broadband wireless access. However, increasing

the number of cells increases the required handover rate as a mobile user passes

through the boundaries of these cells leads to more signaling overhead. We

address the impact of mobile users’ mobility model in the urban areas on the

handover rate. We use two real data sets to model the mobility pattern of

pedestrians and drivers, considering their different velocity, move length, and

pause time distributions. We use Poisson Point Processes to model the spatial

distribution of base stations and assume that the number of handovers is equal to

the number of times the users’ trajectories cross the cell’s boundaries. We derive

the distribution function of the handover rate by using the distribution function

of the velocity of users. Simulation results are provided to justify the deployed

mobility model and the derived analytical results for the handover rate. We find

that while the trend of the handover rate against the density of base stations

and bias values at different tiers deploying the derived realistic mobility models

and simple random waypoint model is the same, the total number of handovers

in the network has different behavior. Interestingly, we found that if the number

of users increases beyond a threshold, the handover rate decreases, suggesting

that the hand over rate is bounded.
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1. Introduction

The ever-increasing of new demands for wireless broadband access could not

be met by using traditional methods like increasing the frequency range or the

number of base stations [1]. For example, to respond to the forecasted demand

by increasing the frequency spectrum, we need a 1000x spectrum; means using5

the frequency waves at the limit of visible light [2]. The multi-tier heterogeneous

wireless networks (HWNs) emerge as a new solution in which small cells, along

with the macrocells, are deployed to provide high access bandwidth for mobile

types of equipment. Deploying a large number of smaller cells relief the scarcity

of frequency spectrum; however, the possible movement of users and the passage10

between these small cells may cause a sharp increase in the total rate of network

handover. On the other hand, in HWNs, the commissioning and installation of

small base stations (BSs) are done by individuals in private networks in an

ad hoc manner that offers services to other users, making the shape of cells

different from the regular ones usually observed in traditional cellular networks.15

In Fig.1, we show a typical regular network against a two-tier and three-tier

HWNs assuming for simplicity that all macro, pico, and femtocells have the

same transmission power and bias values.

The irregular cell shapes and the stochastic mobility model of users make

the handover rate estimation an essential and challenging issue in HWNs, which20

needs need new analytical tools beyond the classical Euclidean geometry like

stochastic geometry.

This work addresses the handover rate analysis in multi-tier HWNs. The

handover rate plays an essential role in resource management of wireless net-

works and is a determining factor for the signaling overhead. Network oper-25

ators are interested in decreasing the handover rate by proper mechanisms in

the design and operation of networks. Therefore, modeling and estimating the

handover rate and its relationship with different parameters like the number of
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Figure 1: Due to ad hoc small base stations’ deployment, the cells’ shapes in multi-tier HWN

are irregular, causing the handover rate estimation a challenging problem. (a) a typical regular

network, (b) a 2-tier network consists of macro and picocells, (c) a 3-tier network consists of

macro, pico, and femtocells. The blue line shows a typical user movement trajectory in the

network crossing different cells at different tiers.

tiers or the bias values in HWNs is an important research question that needs

more attention. In multi-tier HWNs, handover management deals with intra-30

and inter-handovers. The intra- or horizontal handover occurs between two base

stations (BSs) at the same tier, and the inter- or vertical handover occurs be-

tween two BSs at different tiers [3]. Note that inter-handover management is

more challenging and may incur more signaling overhead on the network and

adverse effects on the user quality of service (QoS) [4]. The network operators35

are interested in minimizing inter-handovers when a mobile user crosses different

cells.

In the following, we summarize some related works on estimating the han-

dover rate in HWNs.

In [5], the authors deploy the stochastic geometry analysis to analyze the40

handover rate in a single-tier network. The authors assumed that the BSs are

spatially distributed according to the Poisson Point Process (PPP) distribution,

and hence the cells’ shapes are given by the Poisson Voronoi diagram. The user’s

mobility model is a modified random waypoint (RWP) model in which each user

moves at a random speed according to uniformly distributed random variables45

in a given interval. Next, the handover rate analysis for different path lengths

of users and different BSs intensity is performed. The authors show that the
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rate of handover in a heterogeneous network is higher than that of a regular

hexagonal network.

The handover rate analysis for multi-tier networks is discussed in [4] by mod-50

eling the spatial distribution of BSs by the PPP and assuming that users move

between five random waypoints at a constant speed in the network. The results

show that in multi-tier networks, with increasing the number of BSs in a tier,

the intra-handover at that tier and the inter-handover with other tiers increases,

respectively, almost linearly and logarithmically. In other words, if the network55

contains K tiers, increasing the number of BSs of tier-i, the number of han-

dovers between cells in tier-i increases linearly, and the number of handovers

between tier-i cells and the cells in other tiers increases logarithmically. Also,

the number of handovers in other tiers decreases. To consider the non-uniform

spatial distribution of BSs, the authors in [6] suggest the Poisson Cluster Pro-60

cess, which can generate areas in the network with high concentrated BSs. The

hand over rate analysis for these networks shows approximately similar results

to [4]. In this paper, we show that this result is valid for certain speed limits

and the number of users.

Assuming homogeneous PPP, the authors in [7] use stochastic geometry tools65

to evaluate the hand over rate by analyzing a single cell. It is shown that the

hand over rate increases logarithmically as the density of BSs or the speed of

users increases. The authors did not consider the effect of the number of users

and assumed a simple mobility model that does not capture the real scenarios

of movements.70

The tradeoff between the handover rate and the expected data rate is in-

vestigated in [8]. The authors consider a homogeneous single-tier network in a

stochastic geometry framework. The mobile user equipment moves according

to the RWP model and at a constant speed. The authors find that the ex-

pected downlink data rate for the user incurs handovers when crossing the cell’s75

boundary is invariant compared to the mobile user, which does not experience

any handover during fixed time periods.

Ref. [9] extends the results of [4] by studying the handover analysis for
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networks in a 3-dimensional environment, taking into account the length of

the antennas. The authors considered a heterogeneous network in which the80

base stations are distributed as a Poisson Point Process and assumed that users

move horizontally at a certain height with the RWP model. Using the stochastic

geometry framework, the authors estimated the handover rate for Unmanned

Aerial Vehicles (UAVs).

In [10], a new method for estimating the handover rate using the Euclidean85

geometry is proposed. The authors considered a two-tier network consisting

of macrocells and small cells. The small cells with radius r and with specified

intensity are distributed as PPP in the network. The authors estimated the

inter-handover rate using Euclidean geometry, assuming that the users move

directly in an area with a radius of R.90

In [11], the authors exploited the handover rate in the heterogeneous cellular

network to estimate UAV’s velocity. The results suggest that handover analysis

has applications in estimating mobile users’ velocities without using the global

positioning system, which decreases the energy consumption of nodes.

In this work, we first focus on deriving a more realistic but tractable mo-95

bility model for users due to the strong impact of the user’s mobility model on

handover analysis. We perform data analysis on real traces of pedestrian and

driver mobility patterns to derive and use a more realistic mobility model in

our analysis. Interestingly, we found that the handover rate is not an increasing

function of the number of users. This result is reasonable in high-crowded ur-100

ban areas because mobile users’ mobilities are restricted as the number of users

increases. We show that the handover rate does not increase linearly as the

number of users increases, and there is a non-linear relationship between the

network handover rate and the number of users. This result has implications

for network operators to manage their resources in dense urban areas.105

The rest of the paper is organized as follows. In Section 2, we present

the system model and problem statement. Section 3 provides data analysis

on the real mobility traces of pedestrians and drivers in the urban areas to

derive representative mobility models. Using these modified mobility models,
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we present the handover rate analysis in Section 4. Simulation results and110

discussions are provided in Section 5 before concluding the paper in Section 6.

2. System Model and Problem Statement

We use the expanded state of the standard Voronoi Poisson diagram, which

propose to model a random heterogeneous network in [5]. BSs are distributed

in K tiers. In the expanded version, the BSs of tier-k are distributed as an115

independent homogeneous PPP with parameter λk, which is a representative

value for the average number of users [12]. Pk denotes the transmission power

of the BSs of tier k, k ∈ {1, 2, . . . ,K}.

In this model, instead of determining the precise location of BSs, a PPP is

used in conjunction with specific parameters [13]. The main advantage of this120

model is that the locations of BSs are independent of each other, and this allows

us to analyze network performance with stochastic geometry tools [14, 15, 16].

In PPP spatial distribution, we first generate a random sample of the Poisson

distribution with mean λk, which determines the number of BSs or users in the

tier-k. By changing this parameter, we can model dense or sparse networks.125

Next, the location of each BS is given by randomly and uniformly distributed

coordinates in the dimensions of the desired range of the network [4].

We can use a bias coefficient to better manage the intensity of users in each

tier or capture various scales of different cell sizes. Typically, users are associated

with BSs that provides the largest received power; however, by using the bias130

coefficient, user associates to the BS that provides the largest biased received

power [17, 18, 19]. That is, if the user equipment is located at point y, it selects

the BS(y), which provides the maximum biased received power. That is,

BS(y) = argmax
x∈Φk, ∀k

1

α
BkPk|x− y|−γ , (1)

where Φk is the corresponding PPP of tier-k BSs, and α and γ > 2 are, re-

spectively, the factor of system losses and the path loss exponent. Note that135

1
αPk|x−y|

−γ is the average received power from a BS in tier-k that located in x,
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and Bk is the associated bias of tier-k. Biasing facilitates load balancing when

we can logically move users from dense tiers to the sparse tiers by increasing the

level of bias [2], noting that the radio access technology determines the required

received power [4].140

We assume that the transmission powers and biases of the BSs in each tier are

the same. Users are mobile and are subject to the inter- and intra- handovers

between the cells. When a user enters a cell in tier-j from tier-k, we say a

type kj handover occurs. Note that the number of type kj handovers is not

necessarily equal to those of type jk. We assume that the total number of type145

kj handovers is equal to the number of times the users’ trajectories cross the

boundary of cells between k to j. For example, in Fig. 1.c, a 3-tier network

with a hypothetical user trajectory is shown, and the numbers of handovers of

type 12, 13, 21, 23, 31, 32, and 33 are equal to 1, 2, 1, 3, 2, 2, and 1.

To consider the user’s mobility, we suggest a data-driven modified random150

waypoint model in which the distributions of the velocity, move length, and

pause time are computed according to real data sets of mobile equipment, as

discussed in Section 3. The objective is to estimate the handover rate of each

user and for the network. Specifically, we are interested in finding how a more

realistic data-driven mobility model affects the handover rate.155

3. Mobility model

Many studies use RWP mobility to model the movement of users in the

network [20, 21, 22, 23] . In the general form of the RWP mobility model,

each user moves between the waypoints generated randomly in the specified

region. At each waypoint, each user selects a uniform distributed angle in the160

interval [0, 2π] and moves along the path determined by that angle at a random

length, denoted by L. The distributions of movement length and pause times

between consecutive waypoints, in general, could have any random distribution.

However, for simplicity, it is often assumed that users move at a constant velocity

without pause time between waypoints [4]. The authors of [5] assume that165
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the user’s velocity could be constant or uniformly distributed in a range, and

L follows Rayleigh distribution. That is the consecutive movement lengths

L1, L2, · · · are independent and identically distributed (iid) random variables

with the cumulative distribution function (CDF)

P (L ≤ `) = 1− e−µπ`
2

` ≥ 0, (2)

where µ determines the movement length at each step. The larger the value of170

the µ, the shorter is the movement length at each step where E[L] = 1
2
√
µ .

In this work, we focus on the importance of the mobility model on the

performance analysis of handover. In this regard, we analyze the handover for

the case in which the distribution of movement length in each waypoint is general

with an average E[L]. We consider drivers and pedestrians as two significant175

groups of mobile users in the network and derive their mobility model using real

traces of data.

For pedestrian users, we use real data from [24] in which the human mobility

traces are collected from five different sites, including two university campuses

(NCSU and KAIST), New York City, Disney World (Orlando), and North Car-180

olina state fair. Each record of data shows the location of a pedestrian user in

thirty seconds intervals, and we assume that the user has not changed her or his

direction or stopped in this short intervals. For drivers, we use data of [25] in

which the GPS coordinates of approximately 320 taxis collected in every seven

seconds for over 30 days.185

We remove outliers by considering the maximum possible speed of the pedes-

trians or drivers in the urban areas. We also assume that the direction of move-

ment does not change in two consecutive intervals if the direction change is

less than five degrees. Collecting the samples of the movement lengths, pause

times, and speeds for each group of users, we use three goodness of fit for statisti-190

cal models, including Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared

using to identify the best-fitted probability density function (pdf) among sixty

continuous pdfs [26].
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Finally, we select the pdfs with the best scores for each group of users in all

three methods. We find that for pedestrians, the velocity, movement length, and195

pause time are, respectively, well modeled by Gamma, exponential, and Weibull

distribution. For drivers, we find that the velocity, movement length, and pause

time are best characterized by, respectively, Weibull, Gamma, and log-normal

distributions. Fig. (2) shows the real data histogram and the selected pdfs and

Table 1 shows the parameters of the considered pdfs for each group of users.200

This data analysis suggests that users’ mobility profiles could not be modeled

by simple pdfs, as assumed in many studies for simple analysis. Therefore, we

need new tools to analyze the handover rate in more realistic scenarios.

Table 1: The mobility model parameters for pedestrians and drivers

factor pedestrians drivers

velocity
Gamma, fV (v) = vα−1

βαΓ(α)e
− vβ

, α = 2.51, β = 0.91

Weibull, fV (v) = α
β

(
v
β

)α−1

e−( vβ )α

, α = 0.83, β = 18.13

move length Exp., fL(l) = αe−αl, α = 0.07
Gamma, fL(l) = lα−1

βαΓ(α)e
− l
β

, α = 169.11, β = 0.45
,

pause time
Weibull, fS(s) = α

β

(
s
β

)α−1

e−( sβ )α

, α = 0.66, β = 199.4

log-normal,fS(s) = 1
sσ
√

2π
e−

1
2 ( ln x−µσ )2

, µ = 3.04, σ = 0.78

4. Hanover analysis with modified mobility models

We aim to figure out the effect of the mobility model on the handover rates205

in the HWNs. Recall that the locations of BSs and hence the cells’ shapes

in a HetNet are random. We start by restating the results of [4] and [5] in

which the users’ velocities are constant, and users have nonstop moving in the

network. Using stochastic geometry to obtain the density of cell boundaries and

the intersection with user trajectory the total handover rate H and the rate of210

type-kj handovers Hkj are derived as
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Figure 2: The best-fitted models on real data sets for the velocity, movement length, and

pause time of drivers and pedestrians show different behaviors. The best fitted pdfs for

velocity, move length, and pause time for pedestrians are shown in (a) to (c) and for drivers

in (d) to (f). See Table 1 for parameters of each model.
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H(v) =
2E[`]

πE[Tp]

K∑
k=1

λk

(∑K
i=1 λiF (Ψki)

)
2
(∑K

i=1 λiΨ
2
ik

)3/2
, (3)

H(v)kj =


E[`]
πE[Tp]

(
λk(λjF (Ψkj))

2(
∑K
i=1 λiΨ

2
ik)

3/2 +
λj(λkF (Ψjk))

2(
∑K
i=1 λiΨ

2
ij)

3/2

)
if k 6= j

2E[`]λ2
kF (1)

πE[Tp](
∑K
i=1 λiΨ

2
ik)

3/2 if k = j
(4)

Ψkj =

(
PkBk
PjBj

) 1
γ

, (5)

F (Ψ) ,
1

Ψ2

∫ π

0

dθ
√(

Ψ2 + 1
)
− 2Ψ cos θ, (6)

The network parameters in these equations include the density of BSs per

tier, λ, the transmission power per tier, P , and the bias coefficient per tier,

B. In the next section, we examine the effect of some of these parameters on

the handover rate. Note that in (3) and (4), the only user related parameter215

is velocity v, which is directly proportional to the rate of handover. We expect

to have more user-specific parameters in the estimated handover rates by more

exact modeling of users’ mobility. In the following, we provide the analysis which

extends the analysis behind (3) and (4) and takes into account the movement

length and pause time as well.220

Assume that a user selects a waypoint and moves along that waypoint for T

seconds and then pauses for S seconds. Let Tp = T + S denote the total time

of this pass. Note that T and S are random variables. We have:

E [Tp] = E [T ] + E [S] = E

[
L

V

]
+ E [S] = E [L]E

[
1

V

]
+ E[S], (7)

where V is the random variable denoting the speed of movement and is

considered independent of the movement length. We can not calculate the exact

value of E
[

1
V

]
, analytically for the general distribution of V except for simple

pdfs like uniform distribution. Instead, we use the Taylor approximation if the

pdf of velocity has finite mean µ and variance σ2. We have:225
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E

[
1

V

]
≈ 1

µ
+
σ2

µ3
(8)

E [Tp] ≈ E[L]

(
1

µ
+
σ2

µ3

)
+E[S] (9)

Using (9) in (4), the handover rate of type kj is given by:

Hkj =



E[`]
π

 λk(λjF(Ψkj))
2(∑Ki=1

λiΨ
2
ik)

3/2
+

λj(λkF(Ψjk))
2(∑Ki=1

λiΨ
2
ij)

3/2


E[`]

(
1
µ+σ2

µ3

)
+E[S]

if k 6= j

2E[`]λ2
kF (1)

2π(∑Ki=1
λiΨ

2
ik)

3/2

E[`]
(

1
µ+σ2

µ3

)
+E[S]

if k = j

(10)

Next, we find the cumulative distribution function (CDF) of the handover

rate using the estimated CDFs for the users’ velocities. Using (3), we have:

H(v) =

2E[`]
π

∑K
k=1

λk(
∑K
i=1 λiF (Ψki))

2(
∑K
i=1 λiΨ

2
ik)

3/2

E[`]
v + E[S]

=
`mv

`+ sv
, (11)

where ` = E[L], s = E[S],m = 1
π

∑K
k=1

λk(
∑K
i=1 λiF (Ψki))

(
∑K
i=1 λiΨ

2
ik)

3/2 .

To calculate the cumulative distribution function (CDF) of total handover

rate, we have

FH(h) = P (H < h) = P

(
lmv

l + sv
< h

)
= P

(
v <

lh

ml − sh

)
= FV

(
lh

ml − sh

)
.

(12)

Therefore, for drivers with Weibull distributed velocity model, FH(h) is given

by

FH(h) = 1− e−( 1
β ( `h

m`−sh ))α , α = 3.83, β = 18.13, (13)

and for pedestrians with Gamma distributed velocity, we have

FH(h) =
Γ lh

(ml−sh)β
(α)

Γ(α)
, α = 2.51, β = 0.90

Γx(α) =

∫ x

0

tα−1e−tdt (α > 0)

(14)

In the special case that the users’ pause times are zero, the handover rate

for drivers and pedestrians are, respectively, given by FH(h) = 1− e−( h
mβ )α and

FH(h) =
Γ h
mβ

(α)

Γ(α) .230
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Figure 3: The number of vehicles in a lane and their velocities are dependent. The length of

the lane is ls, and the safety distance is d.

We are also interested in finding the relationship between the number of

users and the handover rate, especially for a large number of users. A commonly

adopted method is to compute the number of handovers for a single user and

multiply that by the number of users. However, for the case of drivers, the speed

of driving and the number of drivers are not independent as each driver should235

maintain a safe trailing distance at any speed. For example, the well known

two-second rule indicates that a driver should ideally stay at least two seconds

behind any vehicle that is directly in front of his or her vehicle. Therefore, there

is a nonlinear relationship between the number of drivers n and their speed v

in urban areas. More specifically, assume that the average length of a vehicle is240

lv meter, every vehicle has Np passenger, and any side of the two-way highway

has Ns lanes. Also, in a ls meters long route, assume that Nv represents the

number of cars and d is the distance between two cars in each lane. See figure

(3). We have d = 2 ∗ v, and therefore we can obtain a rule of thumb for the

speed and number of users as245

Nv =
2lsNs

2v + lv
, n = NpNv =

2lsNsNp
2v + lv

. (15)

Using (11) and (15) and assuming that users are moving at the maximum

allowed speed, we can calculate the handover rate for a different number of

users.
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5. Simulations and results

We first consider 2- and 3-tier networks with the same bias values B1 = B2 =250

B3 = 1, and different power levels P1 = 30 dBm, P2 = 20 dBm and P3 = 10

dBm and investigate the handover rate separately for pedestrians and drivers.

The intensity of BSs in the areas that pedestrians get services are considered

as λ1 = λ2 = λ3 = 1 BS/1000m2 and the density of BSs in the drivers areas

are considered sparser as λ1 = λ2 = λ3 = 1 BS/km2. Then, according to255

the defined scenarios, we change the network parameters and investigate the

handover rate changes. We use the models of Table 1 to find the trajectory

of each user in the network. For a fair comparison study, we also consider a

scenario with driver users who follow an RWP mobility model in which the

velocity of users is equal to the average velocity of our scenario.260

Each user associates to the BS with the greatest biased received power ac-

cording to (1). We check the users’ positions in small enough time intervals to

ensure capturing all possible handovers. We find out that if we reduce the time

interval to less than 0.1 seconds, the handover rate obtained does not change

much. Therefore, we reconsider each user’s position every 0.1 seconds and up-265

date the number of handovers if the assigned BS is changed. The results are the

average of the number of handovers for each user in 60 minutes. This process

is repeated 300 times for each point, and we average the obtained data. The

numerical results are compared against the analysis in (10) and (11).

In the first scenario, we investigate how the number of handovers changes as270

the intensity of BSs of tier-2, λ2, in a 2- or 3-tier network increases. See figures

(4) and (5). We have calculated the rate of handover for driver and pedestrian

users, and also standard RWP. Because in all three models of user movement,

a similar network model is used, the trend of change in the rate of handover

is the same. However, while the density of BSs for the driver scenarios, i.e.,275

using our mobility model and standard RWP model, is the same, the number

of handovers is overestimated using the RWP model. The reason is that the

RWP model calculates the time of passage much less than the actual value. In
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Figure 4: Variations in the handover rate against the intensity of BSs in tier-2 in a 2-tier

HWN are depicted. Solid lines are the analytical results, and symbols show the numerical

simulation for a specific type of a handover. (a) for drivers with the suggested mobility model,

(b) for drivers with standard RWP model, and (c) for pedestrians with the suggested mobility

model.

another conclusion, we found that generally, with increasing the number of BSs

of tier-i, the number of type-ii handover increases linearly, and the number of280

type-ij, {j 6= i} handovers increases logarithmically and asymptotically become

a constant value. Also, the number of handovers of type-jk, {j, k 6= i} decreases,

and asymptotically become zero. The reason is that as the number of BSs at

a given tier increases, more of the network requests are responded by BSs at

that tier. That is, users either move between cells at that tier or rarely between285

cells at that tier and other tiers. Therefore, if the policy of a wireless network

operator is to reduce the rate of inter handover at the cost of increasing the intra

handover in a specific tier and total handover, it can increase the BS intensity
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in that tier. However, if it wants to set a certain threshold for the number of

handovers in the network, it needs to have a detailed analysis of how users of290

that network move.
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Figure 5: Variations in the handover rate against the intensity of BSs in tier-2 in a 3-tier

HWN are depicted. Solid lines are the analytical results, and symbols show the numerical

simulation for a specific type of a handover with the same color. (a) For drivers with the

suggested mobility model, (b) for drivers with standard RWP mobility model, and (c) for

pedestrians with the suggested mobility model.

In the next experiment, we investigate the effect of changing the bias value

on the number of handovers with different mobility models. To do this, we

modified the bias value of the BSs of tier-2 in the 2-tier and 3-tier networks and

investigated the handover rate changes. See figures (6) and (7).295

As figures (6) and (7) show, the standard RWP model overestimates the

handover rate. In standard RWP model, user speed is assumed to be constant

and hence E[ 1
v ] = 1

E[v] . However, when the user’s velocity is stochastic with
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Figure 6: Variations in the handover rate against the bias value of BSs in tier-2 in a 2-tier

HWN are depicted. Solid lines are the analytical results, and symbols show the numerical

simulation for a specific type of a handover with the same color. (a) For drivers with the

suggested mobility model, (b) for drivers with standard RWP mobility model, and (c) for

pedestrians with the suggested mobility model.

a certain variance E[ 1
v ] is greater than 1

E[v] according to (8). Therefore, using

(10), the calculated value for handover decreases compared with the constant300

velocity scenario.

Also, as the bias value of the tier-2 increases, the intra handover rate in

tier-2 increases. The reason is that the BSs at this tier now covers a larger area

of the network. However, the total number of handover decreases, because the

cells’ diameters increase as well. Note that we could make the network load305

more balanced by proper adjusting of bias values. That is, we can logically

move users from a crowded tier to a less crowded one. Therefore, one should

tradeoff between the handover rate and load balancing in different tiers of the
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Figure 7: Variations in the handover rate against the bias value of BSs in tier-2 in a 3-tier

HWN are depicted. Solid lines are the analytical results, and symbols show the numerical

simulation for a specific type of a handover with the same color. (a) For drivers with the

suggested mobility model, (b) for drivers with standard RWP mobility model, and (c) for

pedestrians with the suggested mobility model.

network.

Next, we are interested in comparing how the number of tiers affects the310

handover rate. In Fig.8, we provide the handover rates for a 2-tier and a 3-tier

HWNs where the density of BSs in the tier-2 increases. This result shows that

there is a slight difference between these two scenarios. The reason is that the

total number of BSs in both networks is the same, and the number of times that

a user crosses the cells’ boundaries are equal in a specific route.315

Finally, we investigate how the total number of handovers is changing against

the number of drivers on a highway, as in Fig. (3). By assuming that the length

of a vehicle is 4.5-meter, every vehicle has two passengers, and any side of a
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Figure 8: Comparing the handover rate of drivers in a 2-tier and 3-tier HWN against the

intensity of BSs in tier-2

two-way highway has three lanes, in a 1000 meter long route, we show the

relationship between number of users and handover rate in Fig.9.320

We find that in this scenario, the number of handover increases linearly as

the number of users increases up to a threshold corresponds to the maximum

allowable speed, 80km/h, as expected by (15). However, beyond that threshold,

the speed of users is limited, which leads to a decrease in the handover rate.

6. Conclusion325

We present equations for estimating the rate of handovers in heterogeneous

networks. We use real data analysis to more accurately model the movements

of drivers and pedestrians and use these models to estimate the handover rate

in real scenarios better. We show that the standard RWP model overestimates

the rate of handover. Also, we show that the handover rate does not increase330

linearly as the number of users increases. In future work, we consider a more

detailed analysis of the users’ movements to better estimate the handover rate.
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variable velocity

Figure 9: The relationship between the number of users and the handover rate
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